Towards Building Semantic Role Labeler for Indian Languages
نویسندگان
چکیده
We present a statistical system for identifying the semantic relationships or semantic roles for two major Indian Languages, Hindi and Urdu. Given an input sentence and a predicate/verb, the system first identifies the arguments pertaining to that verb and then classifies it into one of the semantic labels which can either be a DOER, THEME, LOCATIVE, CAUSE, PURPOSE etc. The system is based on 2 statistical classifiers trained on roughly 130,000 words for Urdu and 100,000 words for Hindi that were hand-annotated with semantic roles under the PropBank project for these two languages. Our system achieves an accuracy of 86% in identifying the arguments of a verb for Hindi and 75% for Urdu. At the subsequent task of classifying the constituents into their semantic roles, the Hindi system achieved 58% precision and 42% recall whereas Urdu system performed better and achieved 83% precision and 80% recall. Our study also allowed us to compare the usefulness of different linguistic features and feature combinations in the semantic role labeling task. We also examine the use of statistical syntactic parsing as feature in the role labeling task.
منابع مشابه
Lexical Semantics and Selection of TAM in Bantu Languages: A Case of Semantic Classification of Kiswahili Verbs
The existing literature on Bantu verbal semantics demonstrated that inherent semantic content of verbs pairs directly with the selection of tense, aspect and modality formatives in Bantu languages like Chasu, Lucazi, Lusamia, and Shiyeyi. Thus, the gist of this paper is the articulation of semantic classification of verbs in Kiswahili based on the selection of TAM types. This is because the sem...
متن کاملWhat a Parser Can Learn from a Semantic Role Labeler and Vice Versa
In many NLP systems, there is a unidirectional flow of information in which a parser supplies input to a semantic role labeler. In this paper, we build a system that allows information to flow in both directions. We make use of semantic role predictions in choosing a single-best parse. This process relies on an averaged perceptron model to distinguish likely semantic roles from erroneous ones. ...
متن کاملA Distant Supervision Approach to Semantic Role Labeling
Semantic role labeling has become a key module for many language processing applications such as question answering, information extraction, sentiment analysis, and machine translation. To build an unrestricted semantic role labeler, the first step is to develop a comprehensive proposition bank. However, creating such a bank is a costly enterprise, which has only been achieved for a handful of ...
متن کاملTechniques of Ontology and its Usage in Indian Languages - A Review
Ontology is presently an emerging research topic in the field of artificial intelligence, semantic web, and natural language processing, software engineering, and information architecture etc. Manual Ontology building is essentially a time consuming and tedious task. From the last few decades, different ontology building approaches are being used to build ontology either semi-automatically or a...
متن کاملSemantic Role Labeling Without Treebanks?
We describe a method for training a semantic role labeler for CCG in the absence of gold-standard syntax derivations. Traditionally, semantic role labeling is performed by placing human-annotated semantic roles on gold-standard syntactic parses, identifying patterns in the syntaxsemantics relationship, and then predicting roles on novel syntactic analyses. The gold standard syntactic training d...
متن کامل